UNDERSTANDING ARCHITECTURAL DETAILS - 3
CONCRETE & STEEL CONSTRUCTION

Emma Walshaw
FOUNDATIONS & FLOORS

SECTION 1
The four main types of foundations in steel and concrete construction are:

- Strip foundations
- Pad foundations
- Raft foundations
- Pile foundations

STRIP FOUNDATIONS

The strip foundation consists of a single strip of concrete, which provides a firm and level base for the construction of the walls above. Strip foundations spread the load from walls of brick, masonry or concrete to the subsoil. The foundation depth depends on strength of material, foundation loads and breading capacity of the subsoil.
If the subsoil is weak or susceptible to movement the foundation can be taken to a suitable depth where the strata is stronger and able to bear the loads of the proposed structure.

The width of the strip foundation must be adequate that there is room to lay walling material, and also able to spread the loads to a suitable area of subsoil. As a general rule, the projection of the strip each side of the wall should be no greater than the thickness of the concrete.

In other cases, a wide strip foundation may be used to spread the load of the foundation or the strip can be reinforced.

Strip foundations are more commonly used in domestic and residential construction, or more low rise construction.
PAD FOUNDATIONS

A pad foundation is generally a square of reinforced concrete, that takes the loading from the column above and transfers it to the ground. The column is positioned centrally on the foundation pad, which requires the pad to be sufficiently reinforced to avoid the point loading of the column punching through the foundation.

The column or pier that sits on the pad foundation can be brick, masonry, concrete or steel. Once again the area of the pad is dependent on strength of subsoil, and loading on the foundation material.

Ground beams are often used to span between the pads and transfer the load of the infill wall to the pads.

Pads can sometimes be linked with concrete strip when they are particularly close together, resulting from a frame that has close spacing.

Figure 1.3- Example of a pad foundation with ground beam
Detail G18 B - Raft foundation with toe - concrete frame - alternative detail
3D Detail G18 B - Raft foundation with toe - concrete frame - alternative detail
Detail G28 - Beam and block floor - beams parallel to wall, cast in situ concrete downstand
3D Detail G28 - Beam and block floor - beams parallel to wall, cast in situ concrete downstand
SECTION 1 - FOUNDATIONS AND FLOORS

Detail G36 - Solid concrete ground floor - insulation above slab, screed finish underfloor heating

3D Detail G36 - Solid concrete ground floor - insulation above slab, screed finish underfloor heating
TYPES OF FRAME

Skeleton Frame:
Conventional steel frames are constructed using hot rolled section beams and columns known as a skeleton frame. The skeleton frame supports the whole load of the building - floors, walling, wind pressure and so on. The most economic form of this frame is a standard grid pattern, with a 3m to 4m spacing between columns and floor beams spanning up to 7.5m.

Parallel beam structural steel frame:
This type of frame uses spine beams which are fixed on each side of the columns to support secondary beams that support the floor. This also is most economic when designed in a rectangular grid, and main advantages are the ability to integrate services in both directions within the structure.

Figure 3.8 - Example of structural steel skeleton frame
CLADDING DETAILS

Detail W01 - Rainscreen cladding panels - steel frame infill

3D Detail W01 - Rainscreen cladding panels - steel frame infill
Detail W02 - Rainscreen cladding steel frame infill - base detail
3D Detail W09 - Cladding panels on aluminium frame system - window head detail

3D Detail W08 - Cladding panels on aluminium frame system - window cill detail
3D Detail W17 - Render finish - window head detail
Standing Seam:
Standing seam roofs are becoming increasingly popular where concealed fixings and low roof pitches are required (see in industrial warehouses, long span frames and portal frames). The main advantage of the standing seam system over the profile metal roofs is that virtually no fixings pass through from the outside to the inside construction, thus giving a more aesthetically pleasing roof surface. These roofs are often made from prefabricated systems where the metal is pre-rolled and formed and clipped together on site.
Detail R15 - Extensive green roof - warm deck, edge detail

3D Detail R15 - Extensive green roof - warm deck, edge detail
Detail ICF02 - Strip foundation with ground bearing slab
3D Detail ICF02 - Strip foundation with ground bearing slab
2D Details Index

Detail G01 - Strip foundation 8
Detail G02 - Deep strip foundation 9
Detail G03 G04 - Simple pad foundation with and without reinforcement 10
Detail G05 - Mass fill pad foundation with steel piers 11
Detail G06 - Example of pad foundations 11
Detail G07 - Simple raft foundation 12
Detail G08 - Raft foundation with downstand 13
Detail G09 - Raft foundation with downstand beam and toe 14
Detail G10 - Example of a raft foundation with downstand beam and toe 15
Detail G11 - Simple pad foundation - steel frame 21
Detail G12 - Reinforced pad foundation - steel frame 21
Detail G13 - Mass fill pad foundation - steel frame 22
Detail G14 - Pad foundation with reinforced concrete beam connection between pads 22
Detail G15 - Simple raft foundation - steel frame 23
Detail G16 - Simple raft foundation with downstand - steel frame 23
Detail G17 - Raft foundation with downstand and toe - steel frame 24
Detail G18 A - Raft foundation with toe - concrete frame 24
Detail G18 B - Raft foundation with toe - concrete frame - alternative detail 26
Detail G19 - Deep strip foundation, reinforced concrete slab - concrete frame 28
Detail G20 - Suspended concrete floor - beam and block 30
Detail G21 - Raft foundation with toe - steel frame 31
Detail G22 - Deep strip foundation with reinforced concrete slab - steel frame 34
Detail G23 - Raft foundation with toe - steel frame 36
Detail G24 - Composite floor - steel deck with concrete cast in situ 38
Detail G25 - Precast concrete plank floor 38
Detail G26 - Beam and block floor configurations 40
Detail G27 - Beam and block floor - beams parallel to wall, precast edge beam 40
Detail G28 - Beam and block floor - beams parallel to wall, cast in situ concrete downstand 42
Detail G29 - Cast in situ reinforced concrete slab 44
Detail G30 - Solid concrete ground floor - insulation above slab, chipboard finish 46
Detail G31 - Suspended concrete floor - beam and block, chipboard finish 46
Detail G32 - Suspended concrete floor - beam and block, screed finish 48
Detail G33 - Solid concrete ground floor - insulation above slab, timber floor on battens 48
Detail G34 - Solid concrete ground floor - insulation above slab, screed finish 50
Detail G35 - Solid concrete ground floor - insulation below slab, screed finish 50
Detail G36 - Solid concrete ground floor - insulation above slab, screed finish underfloor heating 52
Detail G37 - Floating floor 53
Detail G38 - Insulated floor 53
Detail G39 - Floating floor 53
Detail G40 - Insulated floor with underfloor heating 53
Detail B01 - Concrete construction, external insulation, external tanking 60
Detail B02 - Blockwork construction, external insulation, external tanking 62
Detail B03 - Blockwork construction, concrete floor slab, internal insulation 64
Detail B04 - Concrete construction, internal insulation 66
Detail F01 - Long span/portal frame - eaves gutter
Detail F02 - Long span/portal frame - mono ridge
Detail F03 - Long span/portal frame - parapet gutter
Detail F04 - Long span/portal frame - ridge detail
Detail F05 - Long span/portal frame - door jamb (in plan)
Detail F06 - Long span/portal frame - external corner (in plan)
Detail F07 - Long span/portal frame - floor detail
Detail F08 - Long span/portal frame - window cill
Detail F09 - Long span/portal frame - window head
Detail F10 - Long span/portal frame - window jamb (in plan)
Detail R01 - Profiled metal deck
Detail R02 - Profiled metal deck with concrete topping
Detail R03 - Reinforced concrete warm deck
Detail R04 - Profiled metal deck parapet junction
Detail R05 - Concrete deck parapet junction
Detail R06 - Profiled metal deck parapet junction option
Detail R07 - Concealed and protected membrane
Detail R08 - Exposed single ply membrane
Detail R09 - Profiled metal deck parapet junction with steel frame wall and structure
Detail R10 - Steel frame concrete plank floor
Detail R11 - Standing seam metal roof - ridge detail
Detail R12 - Standing seam metal roof - mono ridge detail
Detail R13 - Standing seam metal roof - parapet detail
Detail R14 - Standing seam metal roof - gutter detail
Detail R15 - Extensive green roof - warm deck, edge detail
Detail R16 - Extensive green roof - parapet connection
Detail R17 - Extensive green roof - parapet detail option
Detail R18 - Extensive green roof - wall connection
Detail R19 - Extensive green roof, concrete deck typical build up
Detail R20 - Extensive green roof, metal deck typical build up
Detail R21 - Extensive green roof - low parapet
Detail ICF01 - Strip and block foundation with ground bearing slab
Detail ICF02 - Strip foundation with ground bearing slab
Detail ICF03 - Precast concrete floor detail
Detail ICF04 - Window detail
Detail ICF05 A - Flat roof detail
Detail ICF05 B - Pitched roof detail
Note all insulation thicknesses should be calculated in order to achieve required u-values. All structural members should be calculated and assessed by a structural engineer. These drawings MUST NOT be used as construction drawings, and are purely an educational resource. These drawings are not finished or complete construction drawings and should not be used as such. This does not cover CDM regs, and these should always be consulted/considered when drawing up construction documents.